
-R153 53 SINGULARITY SOLUTIONS FOR ELLIPSOIDS 
IN i/i

LOU REYNOLDS-NUMBER FLOWS: WITH A.(U) WISCONSIN
UNIV MAIDISO MATHEMATICS RESEARCH CENTER S KIM FEB 85

UNCLSSIFIED MRC-TSR-2796DA 9---84 F/G 12/1 NL

EOME~E~Eh

EIhh EE hI



I IIB~= . 32 12.2

2.8

1II .25 LA1114

MICROCOPY RESOLUTION TEST CHART

NAI[,rOI A i ;NIR)



Lfl MRC Technical Summary Report #2 790

SINGULARITY SOLUTIONS FOR ELLIPSOIDS

If) IN LOW-REYNOLDS-NUNBER FLOWS: WITH

APPLICATIONS TO THE CALCULATION OF

HfYDRODYNAMIC INTERACTIONS IN

SUSPENSIONS OF ELLIPSOIDS

< Sangtae Kim

Mathematics Research Center

* University of W isconsi n- Madison
610 Walnut Street
Madison, Wisconsin 53705

February 1985

(Received January 31, 1985) DI
AF-CT .S MAY 98

* * IflC ILE O? Approved for public releaseD
W Distribution unlimited

Sponsored by
U. S Ary Reearh oficeNational Science Foundation

P. 0. Box 12211 
Washington, DC 20550

* Research Triangle Park
North Carolina 27709

854



UNIVERSITY OF WISCONSIN-MADISON

MATHEMATICS RESEARCH CENTER

SINGULARITY SOLUTIONS FOR ELLIPSOIDS IN LOW-REYNOLDS-NUMBER FLOWS:
WITH APPLICATIONS TO THE CALCULATION OF

HYDkODYNAMIC INTERACTIONS IN SUSPENSIONS OF ELLIPSOIDS

Sangtae Kim*

Technical Summary Report #2790
February 1985

ABSTRACT

'The disturbance velocity fields due to translational and rotational
motions of an ellipsoid in a uniform stream, constant vorticity and constant
rate-of-strain, required in fundamental studies of behavior of suspensions,
have been obtained by the singularity method. These solutions extend earlier

* solutions for prolate spheroids. Although equivalent solutions were obtained
• -.by Oberbeck (1876), Edwardes (1892) and Jeffery (1922) by separation of

variable in ellipsoidal coordinates, the singularity solutions are far more
simple in form. Other significant results obtained by the singularity method
include the exposition of the unified structure shared by the three boundary
value problems and the construction of new forms of the Faxen laws for
ellipsoids through application of the reciprocal theorem. The disturbance
solutions and Faxen laws, the basis for Smoluchowski's (1911) method-of-
reflections technique, are used to calculate hydrodynamic interactions between
two or more arbitrarily oriented ellipsoids. In particular, mobility problems
are solved directly to order R 5 , where R is the centroid-to-centroid
separation between the ellipsoids.
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SIGNIFICANCE AND EXPLANATION

The calculation of hydrodynamic interactions between nonspherical

particles is needed for the understanding and control of many natural and

manufacturing processes, for instance, those involving sedimentation,

colloidal stability or suspension rheology. While single-particle solutions

for disks, needles (and in general, ellipsoids) are available, such solutions

.* are not easily generalized to multi-particle problems, necessary for examining

particle-particle interactions. New forms are presented here which greatly

facilitate this task. A model sedimentation problem involving two ellipsoids

of revolution is used to illustrate the general technique. Future work will

cover other applications of this technique.
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NOTATION

A resistance tensor for spheroids.

a largest semi-axis of ellipsoid.

b inter:ediate semi-axis of ellipsoid.

C resistance tensor for spheroids.

c smallest semi-axis of ellipsoid.

d spheroid orientation vector.

E rate-of-strain tensor.

e eccentricity of the generating ellipse.

F force exerted by the fluid on the particle.

f density function in singularity distributions.

- ggravitational vector.

H resistance tensor for spheroids, rank s 3.

I Oseen-Burgers tensor.

S.L vector operator in singularity solution.

M resistance function for spheroids, rank - 4.

* n unit vector normal to the surface.

. p pressure.

q density function in singularity distributions.

R center to center separation between two ellipsoids.

r radial coordinate from particle center.

S symmetric part of the stress-dipole (stressiet).

T torque exerted by the particle on the fluid.

T anti-symmetric part of the stress-dipole.

U particle translational velocity.

9.o
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v fluid velocity.

X resistance function for spheroids.

x Cartesian coordinate.

x position vector.

x' point on the fundamental ellipse.

Y resistance function for spheroids.

y Cartesian coordinate.

Z resistance function for spheroids.

z Cartesian coordinate.

Greek Letters

a., at, a Constants in Jeffery's (1922) solution.

%0, 81, al Constants in Jeffery's (1922) solution.

Y Y, Y" Constants in Jeffery's (1922) solution.

6 identity tensor.

alternating tensor.

a polar angle for spheroids.

Ufluid viscosity.

pellipsoidal coordinate (p constant gives ellipsoidal surface).

o stress tensor.

x ellipsoidal harmonic.

0Dirchlet potential

angular velocity of fluid.

S w particle angular velocity.

.*



1, 2 labels for particles.

E refers to the fundamental ellipse

i, J, k, Z, ... indices used in the Einstein summation convention.

(n) label for multipoles in the singularity solution.

Superscripts

(n) label for the n-th reflection.

ambient field.



SINGULARITY SOLUTIONS FOR ELLIPSOIDS IN LOW-REYNOLDS-NUMBER FLOWS:

WITH APPLICATIONS TO THE CALCULATION OF

HYDRODYNAMIC INTERACTIONS IN SUSPENSIONS OF ELLIPSOIDS

Sangtae Kim*

1. INTRODUCTION

Suspensions of nonspherical particles exhibit non-Newtonian behavior through

the interaction between the flow field and Brownian motion (Giesekus (1962),

Brenner (1972), Hinch & Leal (1972). However, rigorous derivation of the

material functions to date have been restricted to the dilute limit, partly

because of the lack of information on multi-particle hydrodynamic

interactions. Existing information on particle-particle interactions is

litbited to interactions between prolate spheroids in certain geometries such

as large particle-particle separations (Wakiya 1965) or special configurations

(Gluckman et. al. 1971; Liao & Krueger 1980). Hydrodynamic interactions

between oblate spheroids, despite widespread occurence, e.g. the disk-shaped

kaolinite minerals in clay/water suspensions, have received even less

attention.

The first steps towards a method-of-reflections solution of

multi-ellipsoid, hydrodynamic-interaction problems are presented here. Our

primary goal is the solution of problems where the rigid-body motion of the

particles are to be determined, given the external forces, torques and the

ambient velocity field. Defined by Batchelor (1976) as mobility proble!'-,

these problems appear most frequently in the hydrodynamic interaction terms of

the rheological theories mentioned above.

*Department of Chemical Engineering and Mathematics Research Center,

University of Wisconsin-Madison, Madison, WI 53706
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Our faith in the method-of-reflections approach is based on the

experience with spherical particles where it Is known that one can solve the

mobiliLy problems accurately with a surprisingly small number of reflections

(see for example, Felderhof (1977) and Jeffrey & Onishi (1984)). This

oonclusion appears to hold as well for prolate spheroids. Kim (1984b) has

determined the sedimentation velocities of two arbitrarily oriented spheroids

-5accirate to order R where R is the centroid-to-centroid separation, using

only two reflections beyond the isolated-particle solution.

The method of reflictions used here follows Smoluchowski (1911). Readers

who are not familiar with the details of this technique are referred to the

liscussion in Happel & Brenner (1973). The method is summarized as follows.

The disturbance velocity field generated by a test particle (call this

particle-a) will modify the velocity field seen by other particles (for

example, at particle-8). We call the disturbance velocity generated by 8 in

response to the disturbance from a as the "reflected field at 8". This

process can be continued indefinitely, with each reflected fields as the

incident field at higher order reflections.

The disturbance velocity field of an isolated particle can be considered

a ruflection with the ambient velocity field as the incident field. We call

this the zero-th reflection. The first reflection generates reflected fields

t ea(,h particle with the zero-th reflection fields from all other particles

Stre incident fields. For an M-particle suzpension, the N-th reflection

1; N-I
Igncrc1es MX(M-I) reflected fields from Mx(M-1) incident fields.

ve shall represent the reflected field by a multipole expansion with the

.,iltipole moments related to the incident field by Faxen laws (Rallison 1978,

o im 1983). This approach is direct and simple bit its success hinges upon the

availability of the Faxen laws for the lower order moments.

"4- .- ": • . :- . .,
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Brenner (1964) has shown, using the Lorentz (1907) reciprocal theorem,

that Faxen laws can be constructed if one knows the stress distribution in the

conjugate velocity problem; i.e. the solution for translating ellipsoids,

rotating ellipsoids and ellipsoids in a rate-of-strain field are required for

the Faxen laws for the force (Brenner 1964), torque (Brenner 1964) and

stresslet (Rallison 1978). Furthermore, if the conjugate solution is

expressed in terms of the fundamental solution of the Stokes equation, (also

known as the Stokeslet) then as noted by Hinch (1977), Brenner's (1964)

procedure reduces to the simple statement that the Faxen law for the moment

has the same functional form as the conjugate velocity field. An explicit

statement and proof is given in Kim (1985a). Therefore, the bulk of the

present work is directed towards finding such singularity solutions for

ellipsoids.

The singularl.y method has been used by Chwang & Wu (1974, 1975) to solve

exactly the translational, rotational and rate-of-strain problems for prolate

spheroids. These solutions are the conjugates for the Faxen force, torque and

stresslet law. In their introduction, they review the history of the

singularity method, including the pioneering works of Lorentz (1892), Oseen

(1927) and Burgers (1938). Other early applications of the singularity method

are the works on slender-body theory by Hancock (1953) and Tuck (1964). Less

has been done on "thin-body" theory but recent results are available for thin

oblate bodies of revolution, e.g. Barshinger & Geer (1984). As stated by

Chwang & Wu (1975), "through these investigations, the relative simplicity and

effectiveness of the (singularity) method have gradually become more

r-cognlzed". However, the primary difficulty is that a priori, one does not

know zhe type of singularities i:nd their distributions. In fact, one
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objective of the work of Chwang & Wu (1974, 1975), Chwang (1975) was the

accumulation of a class of exact solutions by the singularity method. Section

2 of the present work adds the general ellipsoidal shape to this collection.

The organization of this paper is as follows. In Section 2, the

ellipsoidal solutions of Oberbeck (1876) and Jeffery (1922) are re-expressed

as singularity solutions, i.e. in terms of the fundamental solution of the

Stokes equation. (Edwardes' (1892) work is contained within Jeffery's

solution). The form of the singularity solution is surprisingly simple. In

addition, the singularity method reveals a unified structure which is not

apparent in the traditional expressions in ellipsoidal harmonics. This

structure suggests new forms for the velocity representations for nonspherical

particles in capillaries and other bounded domains. The special case of

oblate and prolate ellipsoids of revolution, including a complete discussion

of the resistance tensors, is provided in the appendix. Section 3 is a

discussion on new forms of the Faxen laws for the force, torque and stresslet

on an ellipsoid with applications to the method of reflections for two

ellipsoids. The hydrodynamic interactions between two sedimenting oblate

spheroids have been determined and are compared with the results obtained in

Kim (1985b) for prolate spheroids.
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2. THE SINGULARITY SOLUTION FOR ELLIPSOIDS

In this section, we will derive the singularity solution for an ellipsoid in

Stokes flow. We will start by describing the classical boundary value problem

followed by a description of the singularity solution. The derivation is

outlined in the appendix.

2.1 Description

Consider an ellipsoid with semiaxes of lengths a, b and c, with aZb~c. The

ellipsoid surface satisfies:

-- Y + y+ --- .1.(2.1)

The governing equations for the velocity, X, and pressure, p, are the Stokes

equations for low-Reynolds-number flow,

-Vp + PV2V - O, (2.2)

where w is the viscosity; and the equation of ccrntinuity for incompressible

flow,

V-v - 0. (2.3)

The boundary conditions are:

1) On the ellipsoid surface, v is equal to the particle's rigid-body moa.

vY- U + Wxx

2) As vxj -- >-, v approaches the ambient velocity, i.e.,

v -> v - U69 + xx + E'X,

whe-e U and w are the particle translational an- ot-iona- vecitles - I



• - - , - - - , - , ' - d' .' -

6 j

0 and E are the uniform stream, ambient rotation and rate-of-strain. From

'2.b), it follows that 9 is one-half of Vxv , the ambient vorticity.

The solution to this problem can be expressed using a distribution of

!(x-x')/(8vV), the fundamental solution of the Stokes equation. 1, the

3seen-Burgers tensor given by

I - -j + 3 xixj, with r = (2.5a)
ij r ij r

and its pressure field, p 2 p3x (2.5b)
j r xj

satisfy the Stokes equation with point forcing,

BP + PV2Ii
- - 8=6-j6(x), (2.6a)

and the continuity equation, 9X ij - 0 (2.6b)

i

(see Happel & Brenner (1973) Chapter 2).

It is now claimed that the disturbance velocity field, v-v , can be

tten as:

2 (n) 2 2
>-v'(x) 2 () (n) ,y22+ I(x-x')/(8Yrp) dx'dy', (2.7)v'x'-v X) E L J (n) (X'Y,)l 4n-n-i E

(x,y) - (2n-1) 2n-3 (2.8a-e)
(n) 2 TaEbE

x' y']1/2,[(xy) 2 .
a b2
E

2_ 2 1/2 2_ 2 1/2-3E (a2-c2)/ bE (b2-c2)

(n) F if n=1,

+ 1 7 if n=2.

following is a description of the terms whi h appears in the solution.
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t e orientation trajectories are followed from 9=0 (horizontally

i:ritjed oblate spheroids and vertically oriented prolate spheroids) the

'n Figures 2 and 3 fall into two groups, depending on the initial value

: f r. For both oblate and prolate spheroids, if R (at 6=0) exceeds a critical

•,iue, then the particles monotonically drift apart. Their orientations

app'na asymptotically a limiting value of 8, since at large separations W

-3 zero. However, for initial values of R less than the critical value,

the rotational motion is sufficiently large to cause the particles to rotate

tevond =7/2, 4hereafter, the particles drift back towards each other along

trajectories which are mirror images of the outward trajectories. The

secaatrix which starts at the critical value of R has the asymptote 6 -7/2

h,.roizontal orientation).

At large values of R, the trajectories can be approximated accuarately by

taking Just the leading terms on the right-hand-side of evolution equations

7z-.19) and (3.13). These approximate equations have exact solutions,

:blate spheroids: 1 (2/3)1/yA _ 1/xA)(cs28 -

- T- 0coS2

-n prelate spheroids: 1 - 1 A cs 1/y)A)(.cs28 -
P c1 (2/3)(1/X 0 /A( 0 2R0

T.,,: re3tance unt A A
... unction X and Y are defined in the appendix.

Ir.f fuence of the aspect ratio is seen by comparing Figures 2 and 3

'"i :',:t ratios of 10 and 2 respectively. As the aspect ratio is reduced,

.w- -. ;io. moCCupied by periodic trajectories enlargens and the trajectories

into the vertical lines of the spherical case. Finally, at a fixed

S3 '- : :ner hydrodynaic Interactions between oblate spheroids

-i .,r.eit', r n of periodic trajectories.
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R /a

Figure 1. Mirror symmetry geometry of two inclined spheroids with their
axes in a common plane. The solid and dashed axes are the
symmetry axes for oblate and prolate spheroids, respectively

I 
:
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InoW Consider two inclined oblate spheroids settling with their axes

ly~ng in a common vertical plane (Figure 1). At all times, the geometry is

5peIied by the dimensionless center-to-center separation, R/a and 0, the

14
polar angle between d and the x-axis. At all but small separations, the

two- reflection solution provides accurate answers. The convergence behavior

is similar to that reported in Kim (1985b) for prolate spheroids.

The evolution of the geometry is caused by the anisotropy in the mobility

tensors and the rotation of the spheroids about the y-axis (which for oblate

spheroid is co-incident with a major principal axis). Since the mobility is

lesF in the axial than in the transverse direction, an inclined spheroid

drifts horizontally as it settles. At the same time, the spheroid rotation

changes the orientation of the axis. These two effects, under the

quasi-steady assumption, are governed by the dimensionless equations (with R/a

rewritten now as R)

6 -0 (R,e) (3.12)
y

R - -2U (R,e) (3.13)

Figures 2 and 3 show the evolution of R and e as determined by

integrating (3.12) and (3.13) with a fourth order Runge-Kutta routine. The

solid lines are the new results for oblate spheroids and the dashed lines are

the earlier results for prolate spheroids. The plots include the curve

R - 2(1 - e2cos2 6)1/2 ,

for contact between the two spheroids.

U, Tt-is A differs from the one used in Kim (1985b) for prolate spheroids by
7/2 in order that the same value of e in the two problems yields identical
crozs-sections in the x-z plane.

.'4 i "
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The contributions to the sedimentation and angular velocities on

ellipsoid 1 at the second reflection are obtained by using !12 as the incident

field in the Faxen laws. The method of reflections result for U is now

accurate to O(R 5). An error of O(R 6) comes from the neglected quadrupole

fields in v12 (for which the Faxen laws are as yet unavailable). Thus the

solution for ellipsoids has been developed to the same level as that presented

for prolate spheroids in Kim (1985b).

It should be clear from the steps used at the first and second

reflections that in general, at higher order reflections, the contribution to

the sedimentation velocity of ellipsoid a from the n-th multipole from

ellipsoid 8 is of the form:
6

fI; (xl)f (XP
SJJ (1) -a n)(-0

E Ea

ii+ 2 2 +2 2 (~ /8u Ad B

a a c C8q/(4n-2))V2} -a-B dA dAV

(in)where L is the appropriate multipole moment on ellipsoid 0 obtained at the

. previous reflection. An analogous procedure can be followed to determine the

contribution to the angular velocity.

In actual computatation, the integrals over the fundamental ellipses were

parametrized with the elliptic coordinates:

x - aEPcoso, y - bEPsin .

Three-point Gaussian quadratures were adequate for the p-integration (the

-2 2
Gaussian quadratures were performed after the change of variable, p = i-p2).

Simpson's rule was used for the C-integration.

[

1f•i . •y 7 . I
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weighted by density functions which appear in the singularity solution of the

conjugate boundary value problem.

3.1 Sedimentation of two ellipsoids

We proceed to solve the sedimentation problem for two ellipsoids by the method

of reflections as an application of the general results of Section 2. The

zero-th order solution at particle-a is simply the velocity field generated by

an isolated ellipsoid subject to an external force F . For example, at

ellipsoid 2,

y(O) F - , (3.10a)

-2 () 2

Y2 ajj f(1)(X'qy'){ " Cq 2 V t(x-z')/(8nw) dx'dy', (3.10b)

E

(Each ellipsoidal particle in the suspension has its own fundamental ellipse

and constants. This dependence is not expressed in order to simplify the

notation). The contributions to the sedimentation and angular velocities on

ellipsoid 1 from the first reflection, UM and W , are obtained by using

Y v(x) as the incident field in the Faxen laws for -he translational and

rotational velocities on a force-free and torque-free ellipsoid. The lea,4tr

* term in the reflected field, v21' is a Stokes-dipole field,

E

* with the stresslet determined from the appropriate Faxen law, equation (3 0

The first reflection at ellipsoid 2 follows in a similar fashion, and the

expression for the analogous dipole field, v12' is obtained by switching the

* particle labels.

"0

, .., , . .. ,... . . . .. , .::- . ...-. , .. . i
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T - 1 C. f( 2 )(x',y') [ -Vx!(x') - w ] dx'dy' (3.5)

E

+ 1I:f f( 2 )(x 'y){1 + Cq2V2} e1 (') dx'dy',

E

(4 1 xy'J 2 2V e,(x') dxd'(3.6)
ij P.Mjkjj f(2 )(XYI q d'y

E

+ rP f.-~ Cx'y)x'~ Jk dx'dy'.~Ikijjj (2)~XY

E

EE

For force-free and torque-free particles, these results can be rearranged

into the following expressions for the translational velocity, rotational

velocity and stresslet.

1 IV1" ) xd'(x',y'){ + - q ' (3.7)

E

Wf ()jt 'f rf( M(x )i dxdy' (38)"i " f(2)(x,' L Zx ]

E

* )jHktj f( 2 )(xy6){1 q e(x ) dxdy'

E

,S Sii "[M ijkZ - H mij(C-1mn Hnkt] (3.9)

~E

* Equations (3.4) to (3.9) reduce to the appropriate Faxen laws for prolate

spheroids derived by Kim (1985a) in the limit as b -> c.

Thus the force, torque and stresslet on an ellipsoidal particle in and

ambient flow field v" are obtained by integrating the ambient velccity,

vorticity and rate-of-strain (respectively) over the fundamental ellipse,

0 '
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. vXEN LAiS FOR ELLIPSOIDAL PARTICLES

A correspondence between singularity solutions and Faxen laws follows as a

corollary of the Lorentz (1907) reciprocal theorem (Brenner 1964, Kim 1985a).

The new forms of the Faxen laws obtained in this manner are more useful than

earlier infinite series expansions derived by Brenner (1964) and Rallison

(1973) when the higher order derivatives of the velocity field are not

available.

The linear relations between the drag, torque and stresslet on the

ellipsoid and the ambient field can be expressed as:

Fi. AjA(Uo-U)j (3.1)
S

Ti  UC -) * HiJkEjk (3.2)

S ij - PMijkZEki + uHkij(Q-W)k (3.3)

where A, B, C, H and M are material tensors whose components may be deduced

from equations (2.9), (2.10) and (2.11). The Faxen relations are

generalizations of (3.1), (3.2) and (3.3) since they give F, T and S in any

ambient velocity field that satisfies the Stokes equations over the unbounded

domain. We apply the reciprocal theorem to the singularity solutions as shown

* in Kim (1985a) to obtain the following forms of the Faxen laws for the force,

torque and stresslet:

oA-jj f(1 (x,y){1 + tc qv2 !(x) dx'dy' - AU,(3.14)
E

S

I!:
5
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In summary, the basic results are:

1) The disturbance velocity field for a translating ellipsoid (or a fixed
ellipsoid in a uniform stream) is generated by a distribution of stokes-
lets and potential doublets over the fundamental ellipse.

2) The disturbance fields for a rotating ellipsoid (or a fixed ellipsoid in
a constant vorticity field) and for a stationary ellipsoid in a rate-of-
strain field are generated by a distribution of rotlets, stresslets and
Stokes-octupoles over the fundamental ellipse.

3) For prolate spheroids, the fundamental ellipse degenerates into a line
segment from one focal point to the other and the singularity solutions of
Chwang & Wu are recovered. For oblate spheroids, the fundamental ellipse
degenerates into a circular disk with a diameter equal to the focal length
of the ellipse of rotation.

In all cases, the density functions for the dominant singularities are similar

to those which appear in analogous problems in potential theory.

0%

I

.. .-.. •.. . . . . . .. .... ...-. .. .... ...-......-.... * ... . ... '... . .- "...L. .- .



9

* obtained by evaluating the following harmonic functions at A-0.

X(A) - abc [P()J-1 dX, (2.12)

a(A) .abc a 2 -+1)P(A)]- 1 , (2.13)

2 2 2 1/2
with P(A) - [(a +X)(b +)(c +A)]

The lower limit of the definite integral, I(x,y,z), is the positive root of

x 2  v2 Z2

a- '*~- fx --I-*" 1

af2+X b+ cA c+X 1

The functions 8() and Y(A) are obtained by successive cycling of the

dependence on a, b and c. The ' functions are defined by:

' (Y-B)/(b2 -c ), (2.14)

with 8'() and Y'(A) defined by successive cycling of the dependence on a, b

and c (and therefore also, a, 8 and Y). The " functions are defined by:

, = (b28-c2Y)/(b 2-c2), (2.15

with 0"(A) and Y"(1) defined by successive cycling of the dependence on a, b

and c (and therefore also, a, 8 and Y). This completes the description of the

singularity solution. For the special case of ellipsoids of revolution, these

constants are given in the appendix along with a complete description of tho

*• resistance tensors. Asymptotic expressions for the spheroidal resistance

functions are also provided for slender, flat and near-sphere limits.

S

3. a, 8 and Y are as defined in Happel & Brenner (1973) and differ from
Jeffery's definition by a factor of (abc). This also holds for the ' .-

functions.

i

.i

I' " " ' 1 1 i i i . '  i - -i • -I L -I . ." .-
::: :' i i : : " " : ." -- ; :: . -- . -" : "'

• o o- . - .,°,,. %.o % .-.- - .=. •=% o o, ' o. . .. . o. • • .. ..



an elliptical disk, as can be seen by looking at the limit c = 0 in equation

(2.7).

The function q(x,y) which appears in f plays a prominent role in the
(n)

potential theory for ellipsoidal particles (see Miloh (1974)). In fact, in
-1

potential theory, q is the requisite charge distribution over the

fundamental ellipse which generates ellipsoidal equipotential surfaces.

Chwang & Wu (1975) have noted that the distribution of Stokes multipoles in

low-Reynolds-number problems is similar to the distribution of multipoles in

analogous problems in potential theory, except for the presence of additional

degenerate multipoles (the V 21 term) in equation (2.7). The presence of such

quadrupoles (or potential doublet) when n-1 and octupoles when n-2 in (2.7)

are consistent with (and in fact extend) the rules stated by Chwang & Wu

(1975) for prolate spheroids.

To complete the solution, we must relate F, T and S in terms of the

knowns, U -U, 9-w and E. These relations are found in Oberbeck (1876) and

Jeffery (1922), some of which are shown below. Expressions for other

components can be obtained by the well known mnemonic of cycling the

subscripts x, y and z, and the dependence on a, b and c.

2 -1Fx = 161Tpabc(XO + a0a ) (U -Ux) (2.9)

16 2 2 I 22 _) (b2 _21E

T= -jabc(b a + CY ) [(b +c ( + -c )-(E +E ] (2.10)x 3 0 0 x x 2 yz zy
16 )( 11 11 +.11 t a511 -

S = ---. abc (" - + " + E)a (2.1a)xx (2 0xx 60Eyy 70Ezz BO0 0 0O 0O

8 2 b2 0-1

SXy =Syx = r abc(a 2a + b 0  (2.11b)

[(a2-b2 )(a- Wz ) + (aO+a0 )[Y0]
1  (Exy +Eyx)

Here, x'm %O q ca, ;, ", B" and " are constants whioh are

0ee 0 O 0 0'a,6,Y'a'Y
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tlrstconsder (n )  L I

rirst consider , the vector operator. For n-1, L . - -F.1, the

Stokes monopole field, where F is the force exerted on the ellipsoid by the

fluid, i.e.

Son dA

For n-2, L I [(S+T).V]I is the Stokes dipole field, where S and T are

the symmetric and anti-symmetric parts of the stress-dipole on the ellipsoid,

S(o1n)x dA

S is called the stresslet in Batchelor & Green (1972). T is related to theU U

4-_  torque exerted on the ellipsoid by the fluid, by the usual relation between

anti-symmetric dyadics and pseudo-vectors,

7 ---

Tij 2-ijkTk

E(x',y'), the integration domain, is the interior of the fundamental

ellipse,

a 2  2 z- O.

aE E

The fundamental ellipse is the degenerate elliptical disk in a family of

confocal ellipsoids. The major and minor semi-axes of the fundamental

2ellipse, aE and bE, are given in equation (2.8c) . The density function

r (x',y') in E(x',y') is physically the surface singularity distribution for
'(n)

1. The isotropic part of the symmetric stress-dipole usually has no physical
* significance. Batchelor and Green (1972) remove this degree of freedom by
* setting the trace of the stresslet to zero.

2 2" "1 / 2, 2. Hobson (1955) and Miloh (1974) use k and (k2-h2) in place of our aE

and bE.

E...................,..........
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Appendix 1. DERIVATION OF THE SINGULARITY SOLUTION

We show here that the singularity solution, equation (2.7), is equivalent to

the solutions obtained by Oberbeck (1876) and Jeffery (1922), I.e., the

solutions obtained by separation of variables in ellipsoidal coordinates.

The proof is simple once certain integral representations for X(M) and

Q(A), the Dirchlet gravitational potential for a solid ellipsoid, are

aestablished. The Dirchlet potential is defined by

- abc f( b +c - 1 (A.1)

The lower limit of the definite integral, I(x,y,z), is as defined earlier.

The required integral representations are:

rr f , 1 dx'dy', (A.2)

2cjj f(1)( DY) (A.2
'" E

-41rabc f( (x',y)dx'dy', (A.3)

jj~,,dld' f(A(',' 2('

E

with f(1 ) given by equation (2.8a).

The integral representation for X is derived in Miloh (1974) in the more

b mgeneral setting of representation theorems for external Lame functions , Fm .n

The harmonic X is related to the Lame functions by X(A) = 2abcF (p) with
0

p2-a2+A. The Integral representation for 0 follows from the representation

for X. From Kellogg (1953),

1
- -2wfo X(A;u)/u du. (A.4)

The parameter u is introduced by replacing a, b and c in the expression for X

*U a. This definition is the same as in Happel & Brenner (1973) but differs from
Jeffery's by a factor of abc.

b. These functions are defined in the extensive treatise by Hobson (1955).

-I.:. - * !
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wiIth ua, ub and uc. According to (A.4), Q is a superposition of X functions

for a family of ellipsoids imbedded inside the original ellipsoid. This

representation is one way of demonstrating that 2 is a harmonic. The desired

result, (A.3), can be obtained by inserting (A.2) into (A.4) and performing

the u-integration first.

We are now in a position to recover Oberbeck's solution as given by

equation (5-11.8) in Happel and Brenner (1973) for an ellipsoid in a uniform

stream (streaming in the x-direction with velocity Uc):

a 2 2 -1 a) 2vx - -- 4j (X0+ 3a ) + U (x +a a )-1 (xI. - X) + U

Vy . - a X2a a21
2 

+ S+ 2) x (A.5)y X 0 xay

a 2 2-1 a 2 - 2 a
v - U (X0ocza) + UO(x 0 +a 2 )-1

The distribution of Stokeslets, Iij (x-x) , in the singularity solution

can be decomposed as

-1 -
ij(x-x') - -(x - .1.6 ) + x' -I , with r B-r'I. (A.6)ij- j~x ax 1

The x-term in Oberbeck's solution is obtained by taking the first term on the

right-hand-side of (A.6) and recognizing that the integral over the

fundamental ellipse in (2.7) is precisely the integral representation for X,

equation (A.2). It is not difficult to show that the integral of the

remaining term on the right-hand-side of (A.6) over the fundamental ellipse is

related to the second derivatives of Q, i.e.,

4rabc jj f(1 (x ,y,) x 1 2 -
2  

; (A.7)E ' a I T dx'd', =(aj c )axiax.

7 .0 . ,
b" - " " - " - " - "E
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with the temporary notation, al-a, a2-b and a -c. This completes the

1 2 3

transformation of the Stokeslet distribution.

The potential doublet satisfies

2 -V I - -2VV(r

for r*O. Therefore, the integral of the potential doublet over the

fundamental ellipse in (2.7) is just the second derivative of the integral

representation for n. Thus the Q-terms in Oberbeck's solution are obtained by

combining (A.7) and the distribution of potential doublets in (2.7).

By a similar albeit more tedious procedure, one can relate the n-2 case

in the singularity solution to Jeffery's (1922) solution for rotation and

rate-of-strain. Readers are referred to the (1922) paper for the details of

the ellipsoidal-coordinate solution. In his equations (18), (19) and (20) for

the velocity components, the terms containing the constants A, B, C, F, F', G,

G', H and H' may be rearranged into the stresslet and rotlet distributions of

equation (2.7) plus octupoles of strength (a -c 2). After some lengthy

algebraic rearrangement , these octupoles and the terms containing the

constants R, S, T, U, V and W in the (1922) paper (these terms satisfy

V2v 0) reduce to the octupoles in equation (2.7).

c. These steps are omitted here but are available from the author.

6 -" - - - . -i "-
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Appendix 2. COLLECTION OF RESULTS FOR ELLIPSOIDS OF REVOLUTION

The scalar coefficients which arise in the solution of the resistance problems

for ellipsoids of revolution are scattered throughout the literature. Here,

the complete set of resistance coefficients for both prolate and oblate

spheroids are furnished for the convenience of the reader in Tables 1-3. The

information is grouped as follows:

1) The expressions for the ellipsoidal constants, a , ' Y" in the limit
of oblate and prolate spheroids, are given in Table 0. 0

2) The definitions of and expressions for the eight resistance functions which
relate the force, torque and stresslet on oblate and prolate spheroids to
the net translation, net rotation and ambient rate-of-strain are given in
Table 2. Following Chwang & Wu (1975), the shape-dependence is expressed
in terms of the eccentricity, e, of the generating ellipse.

3) In Table 3, asymptotic formulae are given for all eight functions in the

limit as e -> 0 (near-spheres) and e -> 1 (flat disks and thin needles).

The notation for the resistance functions follows that used by Jeffrey &

Onishi (1984). The letters X, Y and Z are assigned according to m = 0, 1 and

2 respectively, where m is the azimuthal constant which appears in boundary

condition. Superscripts A, C, H and M indicate the relation with the

appropriate resistance tensor. The form taken by tensors A and C in Table 2

is simply the decomposition of the translation and rotation problems into

motions parallel and perpendicular to the axis of symmetry. The form taken y

M is also a consequence of the particle symmetry. Finally, as a conseqience

Hof the Lorentz reciprocal theorem, Y appears both as the torque on a scheroid

in a rate-of-strain field and also as the stresslet on a rotating sphere->i as

shown by Hinch (1972).

The exact and asymptotic formulae for the resistance functions are

plotted in Figures (4a) to (5h), from which it is a~parent that the asy .,tc 1

forms are accurate over a wide range of aspect ratics. Rather curiously, for

a flat disk, all three torque functions, X", Y' and "' are e -uaI (and nz :°.

. . . .. . . ... .. . . . . . . . . . . . . . . . . . .
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TiIe 2

A 7-
8nua IXd d + y (8 jd - lu U)
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Table 2 (continued)

Resistance Functions for Oblate Spheroids

X A = 8 e3  2(2e2_i) c (t-l, - ) + 2e/*2- l
- 3 e

" - (2e2+ 3 [2e2) cot- 2 e1-
3 e

5C  2 e 3 1
e e -2 eFI-e

T e

C 253 2 1Y =- e (-e )i -e -2eco

ie
F-e1

e ef3e-e 2 
-- (Ie ) e/-l -(1-2e2 )

x = 8_ e 5 F3  -2e _ (i_2) ot- ( 3e)
5 eXM  2 5

2

,' 5- e e(l+e )  - 2 cot - 1

x ee3 3Ile2cot- ei =- (1-2e2 ) cot-I[. >

S

H-Z 8 5 -1= - e 3 cot (2 + e I _
49 5 e
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Table 2 (continued)

Resistance Functions for Prolate Spheroids

XA .8. e(e) 8 e3 L-2e + (+e2)log('+)

e- L 2e + (3-- )log(L3 3 _ -

A. 8 e32(e) -- e16 3 2e + ( e2)lOg(l -1

T3 L -e I3 e 2) 2e (1-e2 )log( )

3 3

- e 5e) -- e (2-e 2 ) -2e +(l+e 2 el
3 3 L-'

yH h 5e -2e+ (l+e 2 )og

15"M .. e (3-e2)log(.) - 6e]-

yM 4 e 5 [2e(1_2e2)- (le2)log( e)]

x { [2e(2e 2 3) + 3(1e 2)log (1) -2e + (1+e2)log(l+e)]

M 16 5 2 2)2lgLe] -21Z- - e (1-e 3(1- ) - 2e(3-5e)
5 1-e

Table 2. The resistance functions for oblate and prolate spheroids
(scaled to the spherical result), as a function of e, the
eccentricity of the generating ellipse. The constants
C1 (e), 02(e), Y(e) and y'(e) are as in Chwang & Wu (1975).

. -. ..
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Table 3

Asymptotic Behavior of Oblate Functions

J

As e + 0 As e + 1 C -e

XA ,.(-1 e2 31 4) 8 + 2)

10 1400 3i 2.

I e 2 0 79 4 16 + 8 (15w 2-128) 2- e 14 e ) - + - - ..

1 8W

C  (1 3 e 2  99 e 4 ) 4 (1 + + (32-3w 2 ) 2,
10 1400 3w 7 2w 2

yC e1 2 +39 4) 4 (1 + .2)
5 1400 3w 2

yH - 0 + I e 2 (l L e 2  31 e 4 ) 4 (1 C2 )
2 10 1400 3w 2

X9 (9 2 13 e 4 ) 8 (1 + 8 + (128-9w2 ) C2)14 392 
2w15 22

M 2 173 4 + i + (312-20)fI -- e -- e )i 4_ _ (3 -2) 2)
ye 58 e

7 880 5w 2 8

ZM (I - 5 e 2 _ 95 e 4 ) 16 (I + 6 + (512-45w2 ) 2)

14 1176 15w 3w 187 2
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Table 3 (continued)

Asymptotic Behavior of Prolate Functions

-4

As e * 0 As e 1 c 1-e2 L_ .!

A 2 2 17 4 A 4 (8L _6)c 2  .
X -- -- e -- e ,..

5 175 6L c-3 12L 2-12L +3

yA 1 Le 2 57 e 4  yA 8 4e2

10 700 6L +3 2
C 12L C +12L C +3

2 (2L,-2)ec
XC  

1 6e + 27 4 xC 22 + L24
5 175 3 3

9C i 2 18 4 C 2
"1---e +-e" +

10 175 6L-3 12L~c_2L_+3

1 2 I4 H 2 (8L C-5)e2

Y -e + e Y - +--+
2 5 6L -3 12L 2 _12L +3

XM 1 _e 2 + e 4  xm 4 (24LC26)e2

7 49 30L-4 60L_I80L +135

13 2 44 4 2 (16L 2€-32L C+13)c 2

y I 1e +- e
14 735 lOL -5 20L2 _

C 20L 20L +5

ZM -1- 8 e 2 + 1  e 4  ZM 0 + 2 + 2 4

7 147 5 5

Table 3. Asymptotic behavior of the spheroidal resistance functions in
the limit of spheres, needles and disks.
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Figure 4. The rcsistance functions for oblate spheroids, scaled by the

results for spheres. The dashed curves are the asymptotic

forms of Table 3.

a. Force/translation (parallel to axis) function XA.

b. Force/translation (perpendicular to axis) function YA.

Cc. Torque/rotation (parallel to axis) function X

Cd. Torque/rotation (perpendicular to axis) function Y
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Figure 4. (Continued)
H

e. Torque/rate-of-strain function Y

f. Stresslet/rate-of-strain (axisymmetric straining) function X.

M
g. Stresslet/rate-of-strain (hyperbolic straining) function Y

h. Stresslet/rate-of-strain (hyperbolic straining) function .
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figure 5. The resistance functions for prolate spheroids, scaled by the
results for spheres. The dashed curves are the asymptotic
forms of Table 3.

a. Force/translation (parallel to axis) function XA.

b. Force/translation (perpendicular to axis) function YA.

Cc. Torque/rotation (parallel to axis) function X

d. Torque/rotation (perpendicular to axis) function y C
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Figure 5. (Continued)
He. Torque/rate-of-strain function Y

f. Stresslet/rate-of-strain (axisymmetric straining) function .
M

g. Stresslet/rate-of-strain (hyperbolic straining) function Y

h. Stresslet/rate-of-strain (hyperbolic straining) function Z.
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so that C becomes isotropic and

H (C~1  H reduces to 4T~ 2
mlj mn nkE. ijk.

in (3.9), the Faxen law for the stresslet on a torque-free spheroid.

S.
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